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GOES - R Lightning Mapper (GLM)

Optical detector to sense

Intracloud (IC) lightning

Cloud to ground (CG) lightning

The GLM will detect both IC and CG, but will not distinguish
between them

90% detection rate

To be launched during ≈ 2015
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Previous lightning data assimilation efforts

Newtonian Nudging (Fita et al 2009, Pessi and Businger 2009
- empirical relationship between lightning and convective
rainfall, Papadopulos et al. 2009; MM5, ECMWF; Mansell et
al 2007 - flash data used as a proxy for the presence or
absence of deep convection).

EnKF (Hakim et al. 2008) - Lightning data used as a proxy
for convective rainfall.

Hybrid Variational ensemble data assimilation using NOAA
WRF - NMM model (Zupanski, 2010).
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Present lightning data assimilation effort

Our research will use 4-D VAR data assimilation technique to
assimilate lightning into numerical models (WRF) using
proxies such as temperature lapse rate, rainfall rate or other
physical storm parameters

National Lightning Detection Network (NLDN), Lightning
Mapping Array (total lightning detection), Vaisala GLD360
system and the World Wide Lightning Location Network
(WWLLN)

Assimilation of lightning data into tropical cyclone models,
mid-latitude cyclones, severe storms over the U.S.

NLDN only gives data over the U.S, Canada and a few
hundred km offshore.
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Present lightning data assimilation effort

The new Vaisala GLD360 system and the World Wide
Lightning Location Network (WWLLN) give world-wide
coverage, but their detection efficiencies are much worse than
the NLDN. NLDN and these two networks only give CG data
(and the strongest of the IC flashes if close enough to a
sensor). Therefore, we will have to adjust the NLDN data to
give total lightning.

If we use GLD360 or WWLLN away from the U.S. we will first
have to adjust to give the proper number of CG flashes and
then adjust them to give total lightning.
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Present lightning data assimilation effort

For WRF to assimilate lightning our choice depends on the
horizontal resolution of the WRF.

If we choose a mesh which is cloud resolving, we can calculate
flash rates based on ice fluxes. These are the approaches
described by Barthe, C., Deierling, W., Barth, M.C.,2010.

We want to exploit (as in Barthe et al, 2010) the strong linear
correlation between the updraft volume with vertical velocity
w > 5m s−1 and the total lightning flash rate as well as
between maximum vertical velocity and the total flash rate.
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Present lightning data assimilation effort

f = 6.75 ∗ 10−11ws − 13.9(linear correlation), with ws -
updraft volume (m3) above the −5o Celsius isotherm with
vertical velocity > 5m s−1 and f being the flash rate.

f = 5 ∗ 10−6 ∗ wk
max , with wmax - the maximum vertical

velocity
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Present lightning data assimilation effort

So we will link the maximum verical velocity with wmax to the
lightning flash rate and then translate it in temperature lapse
rate using CAPE(Convective available potential energy)

wmax =
√

2 ∗ CAPE ,

according with parcel theory, so we have to adjust for
entrainment.

CAPE =

∫ zn

zg

g
Tparcel − Tenv

Tenv
dz ,

with Tparcel the virtual temperature of the specific air parcel,
Tenv the environment temperature, zf and zn the heights of
free convection and that of equilibrium (neutral buoyancy)
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Present lightning data assimilation effort

In the sequel we describe a short experiment in which we
determined correlation coefficients between flash rate coming
from NLDN (06/30/2004 - 24 hours) and ws(updraft volume)
and wmax(maximum vertical velocity) obtained from WRF
model.

The NLDN flash rate observations are given on a 12 km
spacing grid situated in the South-East part of the U.S.

The chosen WRF domain has a resolution of 3 km and is
positioned inside the NLDN domain.
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We interpolate the observations to the WRF domain grid
points using the inverse distance weighting method and the
Haversine formula for calculating the distance between points.

We obtained very poor correlation coefficients between data in
contrast with the results obtained by Barthe et al, 2010.

This differences may be explained by model errors.
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1D + 4D -VAR approach

1-D+4-D VAR technique of Mahfouf (2002, 2003), Mahfouf
et al. (2005), Bauer et al. (2006a, 2006 b)

Once we established the proxy to a model state variable
(temperature) we start considering a 1-D VAR problem.

Let X be a vector representing atmospheric state

X = (t,Ps , q)

and F0i a set of observations with errors σ0i .

Let Fi (x) be an observation operator generating the needed flash
rate.
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1D + 4D -VAR approach

The optimum profile X minimizes a cost function of the form:

J(X ) =
1

2
(X − Xb)TB−1(X − Xb)+

+
1

2

n∑
i=1

(
Fi (X )− Foi

σoi

)T

R−1

(
Fi (X )− Foi

σoi

)
,

∇J(X ) = B−1(X − Xb) +
n∑

i=1

FT
i R−1

[
Fi (X )− Foi

σ2oi

]
,
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1D + 4D VAR approach

B background-error covariance matrix

Xb background state obtained usually from previous short
forecast.

R observation-error covariance matrix

FT
i is the adjoint of the Observation Operators
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1D + 4D VAR approach

Use 1-D VAR to adjust the temperature profile which modifies
the CAPE.

Consider the 1-D VAR temperature profile as new observations
and assimilate them in 4-D VAR (or incremental 4-D VAR).

This approach minimizes problem that nonlinearities in the
most convective scheme can introduce discontinuities in the
cost function between inner and outer loops of the considered
incremental 4-D VAR.
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Non-smooth observation operators using non-smooth
large-scale optimization

A new approach is to allow discontinuities in the observation
operator (or the cost function) by using non-smooth
nondifferentiable large - scale minimization algorithm (Haarala
2008) LMBM (limited memory bundle method).

Consider cost of nonsmooth optimization vs the linearization
or regularization of the cost functional.(Lopez 2009 ECMWF)
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Non-smooth observation operators using non-smooth
large-scale optimization

The issue of data assimilation with discontinuous observation
operators is relevant to many outstanding data assimilation
problems.

For example, the data assimilation of ”all-sky” satellite
radiance observations, which may or may not be acted by
clouds, has a discontinuous observation operator with respect
to cloud microphysical variables (M. Janiskova, J. F. Mahfouf,
J. J. Morcrette, and F. Chevallier,R. M. Errico, P. Bauer, and
J. F. Mahfouf.)
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Non-smooth observation operators using non-smooth
large-scale optimization

As in Baurer et al (2006a, 2006b), we mention that
observation operators like in our case may require more input
variables than there are contained in the control vector X .

Since the operator is applied within incremental variational
assimilation systems it is fundamental to ask how linearly the
observation operator behaves.

The linearity tests are based on comparing the output of the
tangent-linear model with those from finite-difference
calculations using the forward model.
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Non-smooth observation operators using non-smooth
large-scale optimization

One may look at the ratio

F =
H(x + λδx)− H(x)

λH(δx)

where δx represents the initial perturbation of the control
vector and λ a scaling factor ranging from 10−10 to 10−1.

In the linear case, scaling of the output of the tangent-linear
model should produce the same result as the scaling of the
input to the forward model.

The δx should be realistic because, theoretically, δx could be
chosen too small so that even rather nonlinear models show a
nearly linear performance.
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